
ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICRITCSA

M S Ramaiah Institute of Technology, Bangalore

Vol. 5, Special Issue 2, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE 43

Openstack Architecture Design and Scalability

Principles: An Overview

Pallavi V Patil
1
, Dr Jagannatha S

2
, Balaji B S

3

Assistant Professor, Department of Computer Science and IT, Jain University, Bangalore, India1

Associate Professor, Department of Computer Applications, MSRIT, Bangalore, India2

Student, Department of Computer Science and IT, Jain University, Bangalore, India 3

Abstract: Openstack is an open source software platform for infrastructure provisioning in cloud and hence commonly

deployed as Infrastructure as a Service (IaaS). Openstack Architecture has multiple flavours based on usage scenarios.

Openstack has specific and coordinated components to manage hardware and storage pool which can be accessed

through well define REST API endpoints, command line tool or Web UI. The main challenge in cloud offerings is to
handle the growing demands for the infrastructure catering diverse needs. This results in dynamic infrastructure

provisioning with efficient and robust scalability design. The main objective of Openstack cloud operator is to hide

from user, the failure caused due to the resource limitation and to provision the required infrastructure adhering to

Service Level Agreement (SLA). This paper gives in-depth understanding of Openstack design principles like

Infrastructure segregation. Host Aggregates and Availability zones to achieve massive scalability in Openstack

components and also discuss the architecture design of major Openstack components based on different usage

scenarios.

Keywords: IaaS, Openstack nova, Openstack neutron, Host Aggregates, Openstack Heat.

I. INTRODUCTION

Cloud is a remote resource which is offered by a specific

provider and consumed by the user on rental basis with

adherence to SLA and consumer is charged based on the

utilization of resource and hence Cloud computing is also

called as Utility Computing. The cloud is classified as

public, private, hybrid and community based on the

location of resources. Public cloud is available to all users,

similarly Private cloud is specific to organization hosting

cloud, Hybrid cloud is a combination of both private as

well as public for example to achieve load balancing one

could transfer intensive peak loads to public while
processing less intensive work on private cloud. The cloud

offering can also be classified based on the kind of

services provided like Software as a Service(SaaS),

Infrastructure as a Service(IaaS) and Platform as a

Service(PaaS). IaaS is applicable in scenarios where the

cloud is used to deploy applications without adhering to

any specific platform runtime like java runtime, .Net etc..

PaaS is an extension of IaaS with platform specific

runtimes to host applications, for example IBM Bluemix

Application with Node.js runtime or with Websphere

runtime, Tomcat runtime associated with java build back
etc., other providers include Amazon Web Services,

Google, Microsoft Azure etc.. Hence these services are

coarse grained services. The cloud services can be fine

grained aiming on specific type of resource like Storage as

a Service, Database as a Service etc. The coarse grained

cloud service provider has to face real challenging

situations when demands grows from users and it is

necessary to have well define scalability principles to be

used while designing the cloud architecture.

Openstack architecture design has distinct avatars based

on the usage scenarios. The flavours include nova

(compute focused), neutron (network focused), Openstack

swift/cinder(storage focused), multi-site, hybrid and

massively scalable. The user and operational requirements

really drives such flavours of Openstack architecture. For

general purpose cloud, the requirements are generic like

database as a Service, A web application runtime or
common application development platform etc, and hence

Openstack general purpose cloud is ideally designed to

cater 80% of use cases. The important requirements

includes Cost which is minimized with maximized

utilization, Time to market is obviously less when cloud

infrastructure is used than building customized data center

from scratch, Performance is a baseline requirement to

satisfy user common considerations, Ad-hoc and self -

service applications, the cloud should have ability to self-

provision the resources required for user based on

increasing demand in flexible way. The resources could be
storage, network or can be a simple software, Security is

the major concern for cloud consumers, but cloud

computing works on trust basis but at least primary

security considerations like authentication, authorization,

confidentiality and Vulnerable free should be ensured. It is

not good choice to go for general purpose cloud if security

ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICRITCSA

M S Ramaiah Institute of Technology, Bangalore

Vol. 5, Special Issue 2, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE 44

has highest priority over other requirements. Precise
Capacity planning plays important role to achieve good

scalability.

Scalability is considered as one of the primary

requirements for Coarse grained services like IaaS.

Capacity Planning predicts the amount of resources

required achieving efficient scalability and hence it also

plays important role in finding Cap-Ex (Capital

expenditure) and Op-Ex (Operational Expenditure).

Openstack has well defined scalability ethics, where it

provisions the infrastructure for users without disclosing
the failure environments created due to the shortage of

cloud resources. Massively scalable architecture results in

heavy and large cloud deployments which incur cost for

provider and can be affordable by commercial providers.

The term massive here could be used in the case like when

there is request for 400 instances and currently, in real

time such massive requests are not common. Like General

purpose cloud massively scalable clouds are not driven by

specific use cases and hence its challenging and serves as

platform for heavy workload management. Since private

organizations have seldom requirements for such massive
scalability and therefore massively scalable Openstack

cloud is built as commercial, public cloud offerings. It is

required to automate as many as processes to achieve

efficient scalability. Automation includes dynamic

configuration of resource provisioning, monitoring and

alerting system. Especially monitoring and alerting system

gives signal to provider to increase the cloud space based

on the new requirements. This mitigates the maintenance

costs by reducing the human staff and which in turn

minimizes capital expenditure as such massive labour

intensive work is automated without manual intervention.

In massively scalable architecture, the replacement of the

failure system is preferred over the diagnosis of error as it

incur more human resource cost, because redundant and

common tasks are automated in such environments.

Because of automation, the human resources can be used

instead for other productive tasks like capacity planning.

In other perspective it is not preferred to replace failure

system, for example if production environment goes down

then it is not practical enough to create new system and

build complete environment rather one solution would be

to apply patches for failure components to resolve issues.
This paper aims at understanding Openstack as massively

scalable architecture and usage of such scalability

principles across other flavours.

The rest of the paper is organized as follows, Section II

briefly describes the scalability requirements, Section III

describes the Openstack scalability principles. Section IV

describes other flavours of Openstack architecture design

and how scalability principles are incorporated in other

flavours.

II. OPENSTACK SCALABILITY REQUIREMENTS

There are two main perspectives for requirements of

massively scalable Openstack. Two key actors of cloud

universe are Cloud Consumers and Cloud Providers where

each one of them visualize cloud different from different

angles and hence results in diverse class of requirements.

Massively scalable cloud results in dynamic components

allocation which results in additional stress and overhead

for supporting infrastructure such as databases and

messages brokers. Therefore architecture should be

carefully designed to not negatively impact users’
experience.

A. Cloud Consumer Requirements

Deterministic Process – Cloud Management Software,

Consumer always expect that, there should exist

deterministic, dependable process for managing and

deploying cloud resources. Such a solution can be
provided either through Web Based or well defined REST

API endpoints for managing cloud systems.

Consumption as a Service defining on demand

consumption model when massively scalable cloud

reaches threshold. Such a consumption model helps in

automatic discovery of cloud services used by consumer

and provides complete usage statistics of consumed cloud

resources, which further helps user to manage their clients’

needs and requirements.

Compromise on security, performance or availability, it is

common observation that consumers of massively scalable

cloud architecture has less expectation on security,

performance and availability rather they require robust
API endpoint which always up and running with basics

SLA offered. Such comprising factor does not exist in

scenarios where massively cloud architecture is used for

some private organization or government departments

where security is major concerns.

Properties Abstraction of Underlying Infrastructure, users

of scalable cloud architecture requires the automated and

deterministic process for managing growing resources

with no botheration on capacity, scalability or other

characteristics of underlying infrastructure.

B. Cloud Provider Requirements

While users are non-transparent on underlying

infrastructure but in contrast, the provider has primary

responsibility for providing such underlying infrastructure

which results in new requirements.

Full Fledged Automation, it is less overhead for provider

if every components of cloud architecture is deployable

automatically. Components include compute-hardware,

storage hardware and network hardware. Automation here

includes installation of components and configuration of

hardware management software. Manual processes are not

practical in massively scalable architecture.

ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICRITCSA

M S Ramaiah Institute of Technology, Bangalore

Vol. 5, Special Issue 2, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE 45

Minimize CapEx, Capital expenditure includes the cost for
third party supporting software require to support

openstack cloud architecture. It is advisable to use open

source software and customized as per individual

requirements in every layer of stack, this reduces the

deployment costs and operational expenses. Open

Compute provides the information about finance

management on cloud and ideas to build cost effective

massively scalable architecture. Some ideas include

removal of redundant power supplies, network

connections and rack switches.

Minimize OpEx, Operational Expenditure costs of

hardware to build data centers. It is recommended to use

cloud optimized hardware. Some metrics include power,
cooling and physical design of blade chassis. Comprising

on such hardware cost is not advisable in all scenarios as

hardware failure really affects cloud consumers and finally

business. It is advisable to buy cheap and best hardware to

avoid operational cost overhead.

Extensible Monitoring Capability, Massively scalable

cloud architecture requires well designed resource

monitoring, metering and alerting system which

automatically creates warnings based on analysis result of

monitoring system. This helps the provider to

replace/diagnose failure components.
Legal and jurisdictional requirements, This kind of

requirements evolve in multi-site architecture where cloud

architecture is geographically spread into different regions.

Also 3A (Authentication, Authorization and Auditing)

requirements of multi-site has impact on scalability.

Consider the Physical Space constraint, Last but not least

requirement consideration for provider in horizontal

scaling is to be aware of physical space, floor weight, rack

height and type and other environmental conditions like

power usage and physical security.

III. OPENSTACK SCALABILITY PRINCIPLES

Openstack uses a principle of incremental and radical

transformation of existing infrastructure for horizontal

scaling. It is hard to deploy the massively scalable cloud

installation for very first time from scratch, ensure that

initial deployment is forward compatible w.r.t principles

and choices that is used for further scaling. For example in

multi-site scenario first build the initial site and while

spreading site on different geographic locations make sure

that the same scaling principles are used. In hyperscale

cloud scenario the infrastructure seems to be redundant,

the applications are carefully modified to avoid such
redundancy and to energize reliability.

A. Infrastructure Segregation

Openstack supports massive horizontal scaling for certain

specific infrastructure in particularly database

management systems, message queues that openstack

services use for data storage and Remote Procedure Call
(RPC). Massively scalable cloud is extension of

traditional clustering process where additional effort and

care is required to mitigate the performance pressure on

the components so that it does not impact the overall

performance of cloud as a whole and eliminates the single

component failure. Horizontal scaling is achieved by

segregating independent and self-controlled installation

which is accessed with Openstack Identity and dashboard

(optional) installations. Such individual physical group is

called Region. Every region has its own database

management systems and message queue installation. In
massively scalable domain it is important to hide the

region level failures and yet to provide the required

infrastructure to users. This mandates further division of

regions into physical groups called Cells as shown in Fig

1[6]. Every cell is associated with its own message queues,

database, scheduler, conductor and multiple compute

hosts. Even though there exists only single Cell API

endpoint for region which handles user requests and

diverge them to cell scheduler. The cell scheduler looks

for available cell and submits the requests, Filter scheduler

then finds the appropriate compute hosts for handling user

requests with in cell.. Because of solely independents
cells the load is further balanced and shared among the

cells of region. There are some drawbacks exists with this

principle, Such Regions and cell concepts works well only

with compute focused architecture and other flavors.

Moreover regions do not support some of the standard and

baseline functionality such as security groups and host

aggregates. The cell concept is relatively new and has less

impact in openstack world. They have been used in CERN

and Rackspace[11-12] clouds.

B. Availability Zones
The Availability zone is part of cell or regions which

allow further division of regions and cell into physical

group installations. Usually Availability zones are formed

based on the shared physical characteristics of the nodes

like shared power source and physical network

connections. Close proximal groups are created because of

such shared physical properties.

Fig.1.Massively Scalable

ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICRITCSA

M S Ramaiah Institute of Technology, Bangalore

Vol. 5, Special Issue 2, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE 46

May be blade servers with in single rack enclosure can
form one availability zone or multiple racks which are

close to each other can form one availability zone and

hence it is totally in the control of operator. Even if one

availability zone fails then the requests are transferred and

processed by other zones and such a decision is based on

the scheduler. The scheduler itself can be hosted on one of

the zone called default Availability Zone. Availability

zones do not possess their own database or message

queues therefore it represents the arbitrary grouping of

compute nodes.An availability zone on each compute node

is created by adding a line
node_availability_zone=availability_zone_name in

/etc/nova/nova.conf then restart corresponding compute

services service openstack-nova-api restart, service

openstack-nova-compute restart. Availability zones can

also be deleted using reverse process. Make sure no

Virtual Servers are in running state and uncomment line

from nova.conf and restart the same services. Existing

Availability zones are listed using nova availability-zone-

list.

C. Host Aggregates

As the name itself indicates that its groups the compute
hosts. Here the group is the logical group of hosts to

achieve load balancing and instance distribution. The host

aggregate can be used to further partition the availability

zones. The grouping criteria is based on the similarity in

shared resources accessed by the compute hosts. The

resources could be storage, network, API services,

databases so on and so forth. To create such group one can

define the group metadata and configure the hosts based

on this metadata. The metadata is stored as key/value pair

typically JSON. The advantage of such metadata is to

handle cloud instance capability management. The host
aggregate can be used to define capability requirements

and serialize as metadata and tags the host group to this

metadata. When there is a request to be served, then

scheduler can choose the group of hosts of availability

zone having capability to process the requests. When there

is a request to shutdown server of such type then only

hosts in this group is considered as candidate. Such

metadata can be set using nova aggregate-set-metadata 1

<key=value>[ref]. Similarly aggregate-create <name>

<zone_name> is used to create host aggregate <name>

with zone <zone_name>, nova aggregate-add-host <id>

<host> is used to add <host> of zone to host aggregate
with host identifier <id>. The API returns the availability

zone separately from the general list of metadata, though,

as it is a special piece of metadata. Some standard defined

keys such as cpu_allocation_ration, ram_allocation_ratio

can be used in to aggregate host with equal CPU and RAM

capacity. One should be careful and cautious while setting

such properties especially when hosts belongs to multiple

groups. The flavour types from different hosts can be

created using extra_specs for example if extra_specs

cpu_allocation ratio 2 then aggregation is performed with

hosts having cpu_allocation_ration set to 2. All these
services runs in single availability zone and hence host

aggregates are possible within zone limit. Hardware

procurement and capacity planning plays important role in

scalability as deployment is planned out ahead of time.

Based on the overcommit ratio one can determine the

requirements of Virtual servers(VS) and physical servers

hosting VS in well advance.

IV. OTHER FLAVORS OF OPENSTACK

ARCHITECTURE

As mentioned before based on use case there are diverse

flavours of openstack architecture exists. The flavours are

General purpose, Compute focused, Network focused,

Storage Focused, Multi Site and Hybrid. The usage of

architecture components are flexible and end up in

different flavours. The scalability principles are generic

principles applied across all the flavours of openstack

architecture especially in compute focused architecture.

A. Compute Focused(Openstack Nova)

Compute focused architecture supports computation

intensive workloads. The main resources such as RAM,

CPU are intensive with minimal requirements on storage

and network. The Use cases includes Big data analytics,

Platform as a Service, High Performance Computing etc..

Capacity planning has two aspects to consider which plays

important role for efficient scalability. The planning for

initial deployment footprint and expansion of the
environment to forecast the user growing requirements.

The Overcommit ratio is the ratio of number of VCpus to

host CPU. The number of expected instances is

(Overcommit ratio* cores)/virtual core pere instance.
Number of instances times the disk size gives the

estimation of storage capacity and hence these ratios plays

important role for scalability. Openstack Compute uses

16:1 [6] CPU allocation ratio and 1.5:1 RAM allocation

ratio. The components of Openstack compute focused

includes Openstack nova, Openstack Image

Service(glance), Openstack Identity(keystone),

Orchestration(heat) and Telemetry. Openstack heat and

telemetry plays important role in autoscaling of

infrastructure based on monitoring, metering and alerting

systems. Openstack cinder, a block storage service and

Openstack neutron is used for network management.

B. Storage Focused

Openstack provides storage in blocks called cinder or

basic blob storage called swift. The storage is spawned

across SAN Storage Area network, when user requests for

storage LUN is created from array of physical disks and

the HBA ports of server and Storage controller is mapped

to form a zone and after presenting this LUN the storage

is formatted for use. Every logical disk i.e LUN can be

further used for swift or block storage. Scaling storage

ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICRITCSA

M S Ramaiah Institute of Technology, Bangalore

Vol. 5, Special Issue 2, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE 47

services provides effective way to increase the storage
capacity as compared with Block and Object storage

services. Adding block storage is fairly simple but to

increase the capacity of storage as a hole and bandwidth is

challenging.

Scaling Block Storage

The group of storage nodes forms the storage pool. New

block storage node can be added to pool without

disturbing the existing storage services. The node is

installed with required hardware/software configured and

this node advertises its presence to scheuler. After
registering to scheduler the user requests are transferred to

storage node for storage space instantiation. This is the

story of capacity planning but it is not just sufficient if

storage is created it is also required to scale the network

bandwidth to support such capacity growth. This requires

dynamic routing protocols and both frontend and back-end

network design should encompass the ability to add

capacity and bandwidth, quickly and easily.

Scaling Object Storage

Scaling of object storage depends on the partition power

of storage service. The partition power determines the
number of partitions which can exists. The partition cannot

span more than single disk but vice versa is true. The disk

with partition power of 4 can have 2^4=16 partitions.

When new disk is added the partitions spread and hence

each disk can have 8 partitions hence scalability is directly

proportional to partition power. As more users add storage

capacity to back end system the network bandwidth should

also be increased to match the access speed as before or

even more. The storage is exposed always as proxy object

and hence scalability also required at this level.

C. Network Focused(OpenStack Neutron)

The use cases for network focused architecture includes

High Speed Content Delivery, means streaming video,

photographs images or accessing distributed cloud storage.

Important factors of Network as a Service are bandwidth,

latency ,congestion and jitter. The user expects high speed

network with low latency. Support of Network

management functions, like DNS, NTP or SNMP etc..

Web Application, Web servers hosting web application

requires descent bandwidth to serve web pages. Other

requirements include Processing of Big data , VOIP and

Video/Web Conferencing. Cloud Networks requires
proper management on capacity and growth overtime.

Capacity planning implies prediction of required network

circuits and hardware. Such estimation helps in dynamic

scaling of network capacity. There are two variations in

openstack neutron Layer 2(Data Link Layer) and Layer

3(Network layer and above) networking. In Layer 3

scalability depends on number of compute nodes i.e if

compute nodes increases the corresponding Virtual routers

increases. It's hard to achieve such scalability from neuton

but with the help of OpenContrail, Layer 3 overlay is

created using a vRouter in the kernel corresponding to
each of the compute nodes. The policies specified are

centrally executed at the Controller and enforced in a

distributed fashion within the vRouter .

V. MULTI-SITE

Openstack efficiently manages group of sites which are

geographically apart as a single cloud. Use cases include

organization with different geographical footprints and

location specific sensitive data which also adheres to data

locality. The information is fetched from the nearest site.
The multi-site deployment is basically improves the

availability of resources. It's important to manage the

replication of data to avoid loss. The template with the

feature of autoscaling heat template is used to deploy the

application in three different regions. Web Servers, which

uses apache for executing relevant user data to populate

the central DNS servers, uses Instance launch and

Telemetry alarms that maintains status of the application

and handles Instance failure. Orchestration is used because

of the in-built support of auto scaling and auto healing in

the event of increased load. The capacity limit of multi-

site architecture is controlled using Quotas where Quota
sets the operational limit which prevents system capacities

from being exhausted without prior notification and these

Quotas corresponding to a per region basis.

VI. CONCLUSIONS

Infrastructure as a Service cloud offerings relieves the user

from infrastructure management rather they can focus on

computation tasks. Openstack provides the software

platform and supports IaaS. The scalability concepts like

Infrastructure segregation, Host aggregates and
Availability zones is proof of massively scalable capability

of openstack. Its is evident from studies that openstack

nova supports most of scalability principles whereas

neutron has limited support for massive scalability.

The openstack storage provides the scalability at both

object and block storage levels. In holistic view the

openstack has good support for scalability.

REFERENCES

[1]. Cruzes, D., Jaatun, M.G.: Cloud Provider Transparency - A View

from Cloud Customers. Proceedings of the 5th International

Conference on Cloud Computing and Services Science.

[2]. Xiao, L.Y., Wang, Z., Wang, R., Wang, H.N.: Architecture and Key

Technologies of Cloud Computing. AMR Advanced Materials

Research. 1953–1956.

[3]. Genez, T.A.L., Bittencourt, L.F., Madeira, E.R.M.: Workflow

scheduling for SaaS / PaaS cloud providers considering two SLA

levels. 2012 IEEE Network Operations and Management

Symposium.

[4]. Breiter, G., Behrendt, M., Gupta, M., Moser, S.D., Schulze, R.,

Sippli, I., Spatzier, T.: Software defined environments based on

TOSCA in IBM cloud implementations. IBM Journal of Research

and Development IBM J. Res. & Dev.

ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICRITCSA

M S Ramaiah Institute of Technology, Bangalore

Vol. 5, Special Issue 2, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE 48

[5]. IBM Bluemix - Create, Deploy, Manage Your Applications in the

Cloud, http://www.ibm.com/cloud-computing/bluemix/.

[6]. OpenStack Architecture Design Guide,

http://docs.openstack.org/arch- design/.

[7]. Openstack Operations Guide,

http://docs.openstack.org/openstack- ops/content/index.html.

[8]. Sefraoui, O., Aissaoui, M., Eleuldj, M.: OpenStack: Toward an

Open-source Solution for Cloud Computing. International Journal

of Computer Applications IJCA. 38–42 (2012).

[9]. Li, L., Chou, W.: Design and Describe REST API without

Violating REST: A Petri Net Based Approach. 2011 IEEE

International Conference on Web Services.

[10]. Frachtenberg, E.: Holistic Data Center Design in the Open Compute

Project. Computer. 83–85.

[11]. Andrade, P., Bell, T., Eldik, J.V., Mccance, G., Panzer-Steindel, B.,

Santos, M.C.D. and S.T., Schwickerath, U.: Review of CERN Data

Centre Infrastructure. J. Phys.: Conf. Ser. Journal of Physics:

Conference Series. 042002–042002 (2012).

[12]. Rackspace and CERN openlab Collaborate to Deliver,

http://blog.rackspace.com/newsarticles/rackspace-and-cern-

openlab-collaborate-to-deliver-big-bang-with-hybrid-cloud/.

[13]. Availability Zones and Host Aggregates in OpenStack Compute

(Nova), http://blog.russellbryant.net/2013/05/21/availability-zones-

and-host-aggregates-in-openstack-compute-nova/.

[14]. Woods, L., Eguro, K.: Groundhog - A Serial ATA Host Bus

Adapter (HBA) for FPGAs. 2012 IEEE 20th International

Symposium on Field-Programmable Custom Computing Machines.

[15]. Lee, N.-K., Han, T.-D., Kim, S.-D., Yang, S.-B.: High performance

RAID system by using dual head disk structure. Proceedings High

Performance Computing on the Information Superhighway. HPC

Asia '97.

[16]. Block level storage vs. file level storage: A comparison -

TechRepublic, http://www.techrepublic.com/blog/the-enterprise-

cloud/block-level-storage-vs-file-level-storage-a-comparison/.

[17]. Factor, M., Meth, K., Naor, D., Rodeh, O., Satran, J.: Object

Storage: The Future Building Block for Storage Systems A Position

Paper. 2005 IEEE International Symposium on Mass Storage

Systems and Technology.

[18]. Egevang, K., Francis, P.: The IP Network Address Translator

(NAT).

[19]. OpenStack Neutron at scale, http://www.opencontrail.

org/openstack-neutron-at-scale/.

http://www.techrepublic.com/blog/the-enterprise-cloud/block-level-storage-vs-file-level-storage-a-comparison/
http://www.techrepublic.com/blog/the-enterprise-cloud/block-level-storage-vs-file-level-storage-a-comparison/

